Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.711
Filtrar
1.
J Affect Disord ; 355: 265-282, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554884

RESUMO

N-acetyl aspartate (NAA) is a marker of neuronal integrity and metabolism. Deficiency in neuronal plasticity and hypometabolism are implicated in Major Depressive Disorder (MDD) pathophysiology. To test if cerebral NAA concentrations decrease progressively over the MDD course, we conducted a pre-registered meta-analysis of Proton Magnetic Resonance Spectroscopy (1H-MRS) studies comparing NAA concentrations in chronic MDD (n = 1308) and first episode of depression (n = 242) patients to healthy controls (HC, n = 1242). Sixty-two studies were meta-analyzed using a random-effect model for each brain region. NAA concentrations were significantly reduced in chronic MDD compared to HC within the frontal lobe (Hedges' g = -0.330; p = 0.018), the occipital lobe (Hedges' g = -0.677; p = 0.007), thalamus (Hedges' g = -0.673; p = 0.016), and frontal (Hedges' g = -0.471; p = 0.034) and periventricular white matter (Hedges' g = -0.478; p = 0.047). We highlighted a gap of knowledge regarding NAA levels in first episode of depression patients. Sensitivity analyses indicated that antidepressant treatment may reverse NAA alterations in the frontal lobe. We highlighted field strength and correction for voxel grey matter as moderators of NAA levels detection. Future studies should assess NAA alterations in the early stages of the illness and their longitudinal progression.


Assuntos
Ácido Aspártico/análogos & derivados , Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/tratamento farmacológico , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Ácido Aspártico/metabolismo , Creatina/metabolismo , Colina/metabolismo
2.
Cereb Cortex ; 34(3)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38430105

RESUMO

Human brain development is ongoing throughout childhood, with for example, myelination of nerve fibers and refinement of synaptic connections continuing until early adulthood. 1H-Magnetic Resonance Spectroscopy (1H-MRS) can be used to quantify the concentrations of endogenous metabolites (e.g. glutamate and γ -aminobutyric acid (GABA)) in the human brain in vivo and so can provide valuable, tractable insight into the biochemical processes that support postnatal neurodevelopment. This can feasibly provide new insight into and aid the management of neurodevelopmental disorders by providing chemical markers of atypical development. This study aims to characterize the normative developmental trajectory of various brain metabolites, as measured by 1H-MRS from a midline posterior parietal voxel. We find significant non-linear trajectories for GABA+ (GABA plus macromolecules), Glx (glutamate + glutamine), total choline (tCho) and total creatine (tCr) concentrations. Glx and GABA+ concentrations steeply decrease across childhood, with more stable trajectories across early adulthood. tCr and tCho concentrations increase from childhood to early adulthood. Total N-acetyl aspartate (tNAA) and Myo-Inositol (mI) concentrations are relatively stable across development. Trajectories likely reflect fundamental neurodevelopmental processes (including local circuit refinement) which occur from childhood to early adulthood and can be associated with cognitive development; we find GABA+ concentrations significantly positively correlate with recognition memory scores.


Assuntos
Ácido Glutâmico , Glutamina , Criança , Humanos , Adolescente , Adulto Jovem , Glutamina/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Ácido Glutâmico/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Colina/metabolismo , Creatina/metabolismo , Inositol/metabolismo , Ácido gama-Aminobutírico/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Ácido Aspártico/metabolismo
3.
PLoS One ; 19(3): e0299961, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483851

RESUMO

In vivo noninvasive imaging of neurometabolites is crucial to improve our understanding of the underlying pathophysiological mechanism in neurodegenerative diseases. Abnormal changes in synaptic organization leading to synaptic degradation and neuronal loss is considered as one of the primary factors driving Alzheimer's disease pathology. Magnetic resonance based molecular imaging techniques such as chemical exchange saturation transfer (CEST) and magnetic resonance spectroscopy (MRS) can provide neurometabolite specific information which may relate to underlying pathological and compensatory mechanisms. In this study, CEST and short echo time single voxel MRS was performed to evaluate the sensitivity of cerebral metabolites to beta-amyloid (Aß) induced synaptic deficit in the hippocampus of a mouse model of Alzheimer's disease. The CEST based spectra (Z-spectra) were acquired on a 9.4 Tesla small animal MR imaging system with two radiofrequency (RF) saturation amplitudes (1.47 µT and 5.9 µT) to obtain creatine-weighted and glutamate-weighted CEST contrasts, respectively. Multi-pool Lorentzian fitting and quantitative T1 longitudinal relaxation maps were used to obtain metabolic specific apparent exchange-dependent relaxation (AREX) maps. Short echo time (TE = 12 ms) single voxel MRS was acquired to quantify multiple neurometabolites from the right hippocampus region. AREX contrasts and MRS based metabolite concentration levels were examined in the ARTE10 animal model for Alzheimer's disease and their wild type (WT) littermate counterparts (age = 10 months). Using MRS voxel as a region of interest, group-wise analysis showed significant reduction in Glu-AREX and Cr-AREX in ARTE10, compared to WT animals. The MRS based results in the ARTE10 mice showed significant decrease in glutamate (Glu) and glutamate-total creatine (Glu/tCr) ratio, compared to WT animals. The MRS results also showed significant increase in total creatine (tCr), phosphocreatine (PCr) and glutathione (GSH) concentration levels in ARTE10, compared to WT animals. In the same ROI, Glu-AREX and Cr-AREX demonstrated positive associations with Glu/tCr ratio. These results indicate the involvement of neurotransmitter metabolites and energy metabolism in Aß-mediated synaptic degradation in the hippocampus region. The study also highlights the feasibility of CEST and MRS to identify and track multiple competing and compensatory mechanisms involved in heterogeneous pathophysiology of Alzheimer's disease in vivo.


Assuntos
Doença de Alzheimer , Creatina , Camundongos , Animais , Creatina/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Animais Selvagens/metabolismo , Ácido Glutâmico , Receptores de Antígenos de Linfócitos T
4.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38365269

RESUMO

The aim of this paper is to investigate dynamical functional disturbance in central executive network in minimal hepatic encephalopathy and determine its association with metabolic disorder and cognitive impairment. Data of magnetic resonance spectroscopy and resting-state functional magnetic resonance imaging were obtained from 27 cirrhotic patients without minimal hepatic encephalopathy, 20 minimal hepatic encephalopathy patients, and 24 healthy controls. Central executive network was identified utilizing seed-based correlation approach. Dynamic functional connectivity across central executive network was calculated using sliding-window approach. Functional states were estimated by K-means clustering. Right dorsolateral prefrontal cortex metabolite ratios (i.e. glutamate and glutamine complex/total creatine, myo-inositol / total creatine, and choline / total creatine) were determined. Neurocognitive performance was determined by psychometric hepatic encephalopathy scores. Minimal hepatic encephalopathy patients had decreased myo-inositol / total creatine and choline / total creatine and increased glutamate and glutamine complex / total creatine in right dorsolateral prefrontal cortex (all P ≤ 0.020); decreased static functional connectivity between bilateral dorsolateral prefrontal cortex and between right dorsolateral prefrontal cortex and lateral-inferior temporal cortex (P ≤ 0.001); increased frequency and mean dwell time in state-1 (P ≤ 0.001), which exhibited weakest functional connectivity. Central executive network dynamic functional indices were significantly correlated with right dorsolateral prefrontal cortex metabolic indices and psychometric hepatic encephalopathy scores. Right dorsolateral prefrontal cortex myo-inositol / total creatine and mean dwell time in state-1 yielded best potential for diagnosing minimal hepatic encephalopathy. Dynamic functional disturbance in central executive network may contribute to neurocognitive impairment and could be correlated with metabolic disorder.


Assuntos
Encefalopatia Hepática , Humanos , Encefalopatia Hepática/complicações , Encefalopatia Hepática/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Glutamina/metabolismo , Creatina/metabolismo , Cirrose Hepática/complicações , Cirrose Hepática/metabolismo , Ácido Glutâmico/metabolismo , Inositol/metabolismo , Colina/metabolismo , Encéfalo
5.
Sci Rep ; 14(1): 4937, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418482

RESUMO

The inverse effects of creatine supplementation and sleep deprivation on high energy phosphates, neural creatine, and cognitive performances suggest that creatine is a suitable candidate for reducing the negative effects of sleep deprivation. With this, the main obstacle is the limited exogenous uptake by the central nervous system (CNS), making creatine only effective over a long-term diet of weeks. Thus far, only repeated dosing of creatine over weeks has been studied, yielding detectable changes in CNS levels. Based on the hypothesis that a high extracellular creatine availability and increased intracellular energy consumption will temporarily increase the central creatine uptake, subjects were orally administered a high single dose of creatinemonohydrate (0.35 g/kg) while performing cognitive tests during sleep deprivation. Two consecutive 31P-MRS scans, 1H-MRS, and cognitive tests were performed each at evening baseline, 3, 5.5, and 7.5 h after single dose creatine (0.35 g/kg) or placebo during sub-total 21 h sleep deprivation (SD). Our results show that creatine induces changes in PCr/Pi, ATP, tCr/tNAA, prevents a drop in pH level, and improves cognitive performance and processing speed. These outcomes suggest that a high single dose of creatine can partially reverse metabolic alterations and fatigue-related cognitive deterioration.


Assuntos
Creatina , Privação do Sono , Humanos , Creatina/farmacologia , Creatina/metabolismo , Privação do Sono/metabolismo , Sistema Nervoso Central/metabolismo , Cognição/fisiologia , Fosfatos/farmacologia
6.
NMR Biomed ; 37(5): e5104, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38258649

RESUMO

Metabolite-weighted chemical exchange saturation transfer MRI can be used to indirectly image metabolites such as creatine and glutamate. This study aims to further explore the contrast of CEST at 2 ppm in the human brain at 7T and investigate the metabolite correlates of CEST at 2 ppm via correlations with magnetic resonance spectroscopy (MRS). Simulations were performed to establish the optimal acquisition parameters, such as total saturation time (tsat) and B1 root mean squared (B1rms) for CEST at 2 ppm in the human brain. Parameters were validated via in vitro phantom studies at 7T using concentrations, pH and temperature comparable to what is found in the human brain. Finally, 10 healthy volunteers were scanned at 7T for comparison with MRS. Our results show that the optimal parameters to acquire CEST at 2 ppm images are: B1rms = 2.14 µT & tsat = 1500 ms, respectively. Comparison with MRS showed no significant correlation between CEST at 2 ppm and total Creatine measured by MRS (R = 0.19; p-value = 0.273). However, a significant correlation was found between CEST at 2 ppm and Glu (R = 0.39; p-value = 0.033), indicating the broad Glutamate-weighted CEST as the main measurable contributor to CEST at 2 ppm. We identified and confirmed optimal CEST at 2 ppm sequence parameters and validated CEST at 2 ppm measurements in a controlled in vitro environment. Our findings suggest that glutamate is a substantial contributor to the CEST at 2 ppm contrast observed in the human brain, whereas the creatine contribution to CEST at 2 ppm in the brain did not show a measurable contribution.


Assuntos
Encéfalo , Creatina , Humanos , Creatina/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Ácido Glutâmico/metabolismo
7.
NMR Biomed ; 37(4): e5083, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38217329

RESUMO

Carnosine, an MR-visible dipeptide in human muscle, is well characterized by two peaks at ~8 and ~7 ppm from C2 and C4 imidazole protons. Like creatine and other metabolites, carnosine is subject to residual dipolar coupling in the anisotropic environment of muscle fibers, but the effects have not been studied extensively. Single-voxel TE 30-32 PRESS spectra from three different 3T studies were acquired from gastrocnemius medialis and soleus muscles in the human lower leg. In these studies, carnosine T2 values were measured, and spectra were obtained at three different foot angles. LCModel was used to fit the carnosine peaks with a basis set that was generated using shaped RF pulses and included a range of dipolar couplings affecting the C4 peak. A seven-parameter analytic expression was used to fit the CH2 doublets of creatine. It incorporated an optimized "effective TE" value to model the effect of shaped RF pulses. The fits confirm that the triplet C4 peak of carnosine is dipolar coupled to a pair of CH2 protons, with no need to include a contribution from a separate pool of freely rotating uncoupled carnosine. Moreover, the couplings experienced by carnosine C4 protons and creatine CH2 protons are strongly correlated (R2 = 0.88, P<0.001), exhibiting a similar 3cos2 θ - 1 dependence on the angle θ between fiber orientation and B0. T2 values for the singlet C2 peak of gastrocnemius carnosine are inversely proportional to the C4 dipolar coupling strength (R2 = 0.97, P < 0.001), which in turn is a function of foot orientation. This dependence indicates that careful positioning of the foot while acquiring lower leg muscle spectra is important to obtain reproducible carnosine concentrations. As proton magnetic resonance spectroscopy of carnosine is currently used to non-invasively estimate the muscle fiber typology, these results have important implications in sport science.


Assuntos
Carnosina , Creatina , Humanos , Creatina/metabolismo , Carnosina/análise , Prótons , Espectroscopia de Ressonância Magnética/métodos , Músculo Esquelético/metabolismo
8.
Neuroimage Clin ; 41: 103557, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38219534

RESUMO

OBJECTIVES: In vivo magnetic resonance spectroscopy (MRS) was used to investigate neurometabolic homeostasis in children with functional neurological disorder (FND) in three regions of interest: supplementary motor area (SMA), anterior default mode network (aDMN), and posterior default mode network (dDMN). Metabolites assessed included N-acetyl aspartate (NAA), a marker of neuron function; myo-inositol (mI), a glial-cell marker; choline (Cho), a membrane marker; glutamate plus glutamine (Glx), a marker of excitatory neurotransmission; γ-aminobutyric acid (GABA), a marker of inhibitor neurotransmission; and creatine (Cr), an energy marker. The relationship between excitatory (glutamate and glutamine) and inhibitory (GABA) neurotransmitter (E/I) balance was also examined. METHODS: MRS data were acquired for 32 children with mixed FND (25 girls, 7 boys, aged 10.00 to 16.08 years) and 41 healthy controls of similar age using both short echo point-resolved spectroscopy (PRESS) and Mescher-Garwood point-resolved spectroscopy (MEGAPRESS) sequences in the three regions of interest. RESULTS: In the SMA, children with FND had lower NAA/Cr, mI/Cr (trend level), and GABA/Cr ratios. In the aDMN, no group differences in metabolite ratios were found. In the pDMN, children with FND had lower NAA/Cr and mI/Cr (trend level) ratios. While no group differences in E/I balance were found (FND vs. controls), E/I balance in the aDMN was lower in children with functional seizures-a subgroup within the FND group. Pearson correlations found that increased arousal (indexed by higher heart rate) was associated with lower mI/Cr in the SMA and pDMN. CONCLUSIONS: Our findings of multiple differences in neurometabolites in children with FND suggest dysfunction on multiple levels of the biological system: the neuron (lower NAA), the glial cell (lower mI), and inhibitory neurotransmission (lower GABA), as well as dysfunction in energy regulation in the subgroup with functional seizures.


Assuntos
Transtorno Conversivo , Glutamina , Masculino , Criança , Feminino , Humanos , Adolescente , Glutamina/metabolismo , Ácido Glutâmico/metabolismo , Convulsões , Ácido Aspártico , Creatina/metabolismo , Colina/metabolismo , Ácido gama-Aminobutírico/metabolismo , Inositol/metabolismo
9.
Biol Pharm Bull ; 47(1): 187-191, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38233148

RESUMO

Cerebral creatine deficiency syndromes (CCDS) are neurodevelopmental disorders caused by a decrease in creatine levels in the central nervous system (CNS) due to functional mutations in creatine synthetic enzymes or creatine transporter (CRT/SLC6A8). Although SLC6A8 mutations have been reported to be the most frequent cause of CCDS, sufficient treatment for patients with CCDS harboring SLC6A8 mutations has not yet been achieved. This study aimed to elucidate the molecular mechanism of SLC6A8 dysfunction caused by the c. 1699T > C missense mutation, which is thought to induce dysfunction through an unidentified mechanism. A study on SLC6A8-expressing oocytes showed that the c.1699T > C mutation decreased creatine uptake compared to that in wild-type (WT) oocytes. In addition, a kinetics study of creatine uptake revealed that the c.1699T > C mutation reduced the maximum uptake rate but not Michaelis-Menten constant. In contrast, the c.1699T > C mutation did not attenuate SLC6A8 protein levels or alter its cellular localization. Based on the SLC6A8 structure in the AlphaFold protein structure database, it is possible that the c.1699T > C mutation alters the interaction between the S567 and Y143 residues of SLC6A8, leading to decreased creatine transport function. These findings contribute to the understanding of the pathology of CCDS and to the development of strategies for CCDS treatment.


Assuntos
Creatina , Mutação de Sentido Incorreto , Humanos , Creatina/metabolismo , Mutação , Transporte Biológico , Proteínas do Tecido Nervoso/metabolismo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo
10.
Lipids ; 59(1): 3-12, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38223990

RESUMO

The low-protein, high-carbohydrate (LPHC) diet administered to growing rats soon after weaning, for 15 days, promoted an increase in energy expenditure by uncoupling protein 1 (UCP1) in interscapular brown adipose tissue, and also due to the occurrence of the browning process in the perirenal white adipose tissue (periWAT). However, we believe that inguinal white adipose tissue (ingWAT) may also contribute to energy expenditure through other mechanisms. Therefore, the aim of this work is to investigate the presence of the futile creatine cycle, and the origin of lipids in ingWAT, since that tissue showed an increase in the lipids content in rats submitted to the LPHC diet for 15 days. We observed increases in creatine kinase and alkaline phosphatase activity in ingWAT, of the LPHC animals. The mitochondrial Nicotinamide adenine dinucleotide reduced/nicotinamide adenine dinucleotide oxidized ratio is lower in ingWAT of LPHC animals. In the LPHC animals treated with ß-guanidinopropionic acid, the extracellular uptake of creatine in ingWAT was lower, as was the rectal temperature. Regarding lipid metabolism, we observed that in ingWAT, lipolysis in vitro when stimulated with noradrenaline is lower, and there were no changes in baseline levels. In addition, increases in the activity of enzymes were also observed: malic, glucose-6-phosphate dehydrogenase, and ATP-citrate lyase, in addition to an increase in the PPARγ content. The results show the occurrence of the futile creatine cycle in ingWAT, and that the increase in the relative mass may be due to an increase in de novo fatty acid synthesis.


Assuntos
Creatina , Ácidos Graxos , Ratos , Animais , Creatina/metabolismo , Ratos Wistar , Ácidos Graxos/metabolismo , NAD/metabolismo , Tecido Adiposo Branco/metabolismo , Dieta com Restrição de Proteínas , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo/metabolismo
11.
Sci Rep ; 14(1): 2374, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287121

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental condition which compromises various cognitive and behavioural domains. The understanding of the pathophysiology and molecular neurobiology of ASD is still an open critical research question. Here, we aimed to address ASD neurochemistry in the same time point at key regions that have been associated with its pathophysiology: the insula, hippocampus, putamen and thalamus. We conducted a multivoxel proton magnetic resonance spectroscopy (1H-MRS) study to non-invasively estimate the concentrations of total choline (GPC + PCh, tCho), total N-acetyl-aspartate (NAA + NAAG, tNAA) and Glx (Glu + Gln), presenting the results as ratios to total creatine while investigating replication for ratios to total choline as a secondary analysis. Twenty-two male children aged between 10 and 18 years diagnosed with ASD (none with intellectual disability, in spite of the expected lower IQ) and 22 age- and gender-matched typically developing (TD) controls were included. Aspartate ratios were significantly lower in the insula (tNAA/tCr: p = 0.010; tNAA/tCho: p = 0.012) and putamen (tNAA/tCr: p = 0.015) of ASD individuals in comparison with TD controls. The Glx ratios were significantly higher in the hippocampus of the ASD group (Glx/tCr: p = 0.027; Glx/tCho: p = 0.011). Differences in tNAA and Glx indices suggest that these metabolites might be neurochemical markers of region-specific atypical metabolism in ASD children, with a potential contribution for future advances in clinical monitoring and treatment.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Criança , Humanos , Masculino , Adolescente , Transtorno Autístico/metabolismo , Glutamina/metabolismo , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/metabolismo , Ácido Aspártico/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Colina/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Creatina/metabolismo , Ácido Glutâmico/metabolismo
12.
Hum Brain Mapp ; 45(1): e26531, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37986643

RESUMO

Magnetic resonance spectroscopy (MRS) is the primary method that can measure the levels of metabolites in the brain in vivo. To achieve its potential in clinical usage, the reliability of the measurement requires further articulation. Although there are many studies that investigate the reliability of gamma-aminobutyric acid (GABA), comparatively few studies have investigated the reliability of other brain metabolites, such as glutamate (Glu), N-acetyl-aspartate (NAA), creatine (Cr), phosphocreatine (PCr), or myo-inositol (mI), which all play a significant role in brain development and functions. In addition, previous studies which predominately used only two measurements (two data points) failed to provide the details of the time effect (e.g., time-of-day) on MRS measurement within subjects. Therefore, in this study, MRS data located in the anterior cingulate cortex (ACC) were repeatedly recorded across 1 year leading to at least 25 sessions for each subject with the aim of exploring the variability of other metabolites by using the index coefficient of variability (CV); the smaller the CV, the more reliable the measurements. We found that the metabolites of NAA, tNAA, and tCr showed the smallest CVs (between 1.43% and 4.90%), and the metabolites of Glu, Glx, mI, and tCho showed modest CVs (between 4.26% and 7.89%). Furthermore, we found that the concentration reference of the ratio to water results in smaller CVs compared to the ratio to tCr. In addition, we did not find any time-of-day effect on the MRS measurements. Collectively, the results of this study indicate that the MRS measurement is reasonably reliable in quantifying the levels of metabolites.


Assuntos
Encéfalo , Giro do Cíngulo , Humanos , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/metabolismo , Reprodutibilidade dos Testes , Espectroscopia de Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Creatina/metabolismo , Inositol/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Ácido Aspártico/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Colina/metabolismo
13.
Protein Sci ; 33(1): e4842, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38032325

RESUMO

In chordates, energy buffering is achieved in part through phosphocreatine, which requires cellular uptake of creatine by the membrane-embedded creatine transporter (CRT1/SLC6A8). Mutations in human slc6a8 lead to creatine transporter deficiency syndrome, for which there is only limited treatment. Here, we used a combined homology modeling, molecular dynamics, and experimental approach to generate a structural model of CRT1. Our observations support the following conclusions: contrary to previous proposals, C144, a key residue in the substrate binding site, is not present in a charged state. Similarly, the side chain D458 must be present in a protonated form to maintain the structural integrity of CRT1. Finally, we identified that the interaction chain Y148-creatine-Na+ is essential to the process of occlusion, which occurs via a "hold-and-pull" mechanism. The model should be useful to study the impact of disease-associated point mutations on the folding of CRT1 and identify approaches which correct folding-deficient mutants.


Assuntos
Creatina , Proteínas de Membrana Transportadoras , Humanos , Creatina/genética , Creatina/metabolismo , Mutagênese , Mutação
14.
Neurochem Res ; 49(2): 402-414, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37855866

RESUMO

Adenosine triphosphate (ATP) is the main energy currency of all cells, while creatine phosphate (CrP) is considered as a buffer of high energy-bond phosphate that facilitates rapid regeneration of ATP from adenosine diphosphate (ADP). Astrocyte-rich primary cultures contain ATP, ADP and adenosine monophosphate (AMP) in average specific contents of 36.0 ± 6.4 nmol/mg, 2.9 ± 2.1 nmol/mg and 1.7 ± 2.1 nmol/mg, respectively, which establish an adenylate energy charge of 0.92 ± 0.04. The average specific cellular CrP level was found to be 25.9 ± 10.8 nmol/mg and the CrP/ATP ratio was 0.74 ± 0.28. The specific cellular CrP content, but not the ATP content, declined with the age of the culture. Absence of fetal calf serum for 24 h caused a partial loss in the cellular contents of both CrP and ATP, while application of creatine for 24 h doubled the cellular CrP content and the CrP/ATP ratio, but did not affect ATP levels. In glucose-deprived astrocytes, the high cellular ATP and CrP contents were rapidly depleted within minutes after application of the glycolysis inhibitor 2-deoxyglucose and the respiratory chain inhibitor antimycin A. For those conditions, the decline in CrP levels always preceded that of ATP contents. In contrast, incubation of glucose-fed astrocytes for up to 30 min with antimycin A had little effect on the high cellular ATP content, while the CrP level was significantly lowered. These data demonstrate the importance of cellular CrP for maintaining a high cellular ATP content in astrocytes during episodes of impaired ATP regeneration.


Assuntos
Trifosfato de Adenosina , Astrócitos , Fosfocreatina/metabolismo , Astrócitos/metabolismo , Antimicina A/farmacologia , Trifosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Creatina/metabolismo , Glucose , Difosfato de Adenosina/metabolismo , Fosfatos , Metabolismo Energético
15.
Brain Imaging Behav ; 18(1): 117-129, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37917311

RESUMO

BACKGROUND: The neurobiology of psychotic depression is not well understood and can be confounded by antipsychotics. Magnetic resonance spectroscopy (MRS) is an ideal tool to measure brain metabolites non-invasively. We cross-sectionally assessed brain metabolites in patients with remitted psychotic depression and controls. We also longitudinally assessed the effects of olanzapine versus placebo on brain metabolites. METHODS: Following remission, patients with psychotic depression were randomized to continue sertraline + olanzapine (n = 15) or switched to sertraline + placebo (n = 18), at which point they completed an MRS scan. Patients completed a second scan either 36 weeks later, relapse, or discontinuation. Where water-scaled metabolite levels were obtained and a Point-RESolved Spectroscopy sequence was utilized, choline, myo-inositol, glutamate + glutamine (Glx), N-acetylaspartate, and creatine were measured in the left dorsolateral prefrontal cortex (L-DLPFC) and dorsal anterior cingulate cortex (dACC). An ANCOVA was used to compare metabolites between patients (n = 40) and controls (n = 46). A linear mixed-model was used to compare olanzapine versus placebo groups. RESULTS: Cross-sectionally, patients (compared to controls) had higher myo-inositol (standardized mean difference [SMD] = 0.84; 95%CI = 0.25-1.44; p = 0.005) in the dACC but not different Glx, choline, N-acetylaspartate, and creatine. Longitudinally, patients randomized to placebo (compared to olanzapine) showed a significantly greater change with a reduction of creatine (SMD = 1.51; 95%CI = 0.71-2.31; p = 0.0002) in the dACC but not glutamate + glutamine, choline, myo-inositol, and N-acetylaspartate. CONCLUSIONS: Patients with remitted psychotic depression have higher myo-inositol than controls. Olanzapine may maintain creatine levels. Future studies are needed to further disentangle the mechanisms of action of olanzapine.


Assuntos
Antipsicóticos , Encéfalo , Depressão , Humanos , Antipsicóticos/farmacologia , Ácido Aspártico , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Colina/metabolismo , Creatina/metabolismo , Depressão/tratamento farmacológico , Glutamina/metabolismo , Inositol/metabolismo , Imageamento por Ressonância Magnética , Olanzapina/farmacologia , Sertralina/farmacologia
16.
Pain ; 165(1): 126-134, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37578456

RESUMO

ABSTRACT: Recently, we showed that patients with knee osteoarthritis (KOA) demonstrate alterations in the thalamic concentrations of several metabolites compared with healthy controls: higher myo-inositol (mIns), lower N-acetylaspartate (NAA), and lower choline (Cho). Here, we evaluated whether these metabolite alterations are specific to KOA or could also be observed in patients with a different musculoskeletal condition, such as chronic low back pain (cLBP). Thirty-six patients with cLBP and 20 healthy controls were scanned using 1 H-magnetic resonance spectroscopy (MRS) and a PRESS (Point RESolved Spectroscopy) sequence with voxel placement in the left thalamus. Compared with healthy controls, patients with cLBP demonstrated lower absolute concentrations of NAA ( P = 0.0005) and Cho ( P < 0.05) and higher absolute concentrations of mIns ( P = 0.01) when controlling for age, as predicted by our previous work in KOA. In contrast to our KOA study, mIns levels in this population did not significantly correlate with pain measures (eg, pain severity or duration). However, exploratory analyses revealed that NAA levels in patients were negatively correlated with the severity of sleep disturbance ( P < 0.01), which was higher in patients compared with healthy controls ( P < 0.001). Additionally, also in patients, both Cho and mIns levels were positively correlated with age ( P < 0.01 and P < 0.05, respectively). Altogether, these results suggest that thalamic metabolite changes may be common across etiologically different musculoskeletal chronic pain conditions, including cLBP and KOA, and may relate to symptoms often comorbid with chronic pain, such as sleep disturbance. The functional and clinical significance of these brain changes remains to be fully understood.


Assuntos
Dor Crônica , Dor Lombar , Dor Musculoesquelética , Doenças Reumáticas , Humanos , Dor Crônica/metabolismo , Dor Lombar/complicações , Dor Lombar/diagnóstico por imagem , Dor Musculoesquelética/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Tálamo/diagnóstico por imagem , Ácido Aspártico/metabolismo , Colina/metabolismo , Creatina/metabolismo
17.
J Neuroradiol ; 51(2): 168-175, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37777087

RESUMO

BACKGROUND: Use proton magnetic resonance spectroscopy (1H-MRS) non invasive technique to assess the modifications of glutamate-glutamine (Glx) and gammaaminobutyric acid (GABA) brain levels in patients reporting a cognitive complain METHODS: Posterior cingular cortex 1H-MRS spectra of 46 patients (19 male, 27 female) aged 57 to 87 years (mean : 73.32 ± 7.33 years) with a cognitive complaint were examined with a MEGA PRESS sequence at 3T, and compounds Glutamateglutamine (Glx), GABA, Creatine (Cr) and NAA were measured. From this data the metabolite ratios Glx/Cr, GABA/Cr and NAA/Cr were calculated. In addition, all patient performed the Mini Mental State Evaluation (MMSE) and 2 groups were realized with the clinical threshold of 24. RESULTS: 16 patients with MMSE 〈 24 and 30 patients with MMSE 〉 24. Significant increase of Glx/Cr in PCC of patients with MMSE 〈 24 compared to patients with MMSE 〉 24. Moreover, GABA/Cr ratio exhibited a trend for a decrease in PCC between the two groups, while they showed a significant decrease NAA/Cr ratio. CONCLUSION: Our results concerning Glx are in agreement with a physiopathological hypothesis involving a biphasic variation of glutamate levels associated with excitotoxicity, correlated with the clinical evolution of the disease. These observations suggest that MRS assessment of glutamate levels could be helpful for both diagnosis and classification of cognitive impairment in stage.


Assuntos
Disfunção Cognitiva , Glutamina , Humanos , Masculino , Feminino , Glutamina/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Ácido Glutâmico/metabolismo , Encéfalo/metabolismo , Ácido gama-Aminobutírico/metabolismo , Creatina/metabolismo
18.
Geroscience ; 46(1): 981-998, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37308768

RESUMO

Mitochondrial dysfunction is a hallmark of cellular senescence and many age-related neurodegenerative diseases. We therefore investigated the relationship between mitochondrial function in peripheral blood cells and cerebral energy metabolites in young and older sex-matched, physically and mentally healthy volunteers. Cross-sectional observational study involving 65 young (26.0 ± 0.49 years) and 65 older (71.7 ± 0.71 years) women and men recruited. Cognitive health was evaluated using established psychometric methods (MMSE, CERAD). Blood samples were collected and analyzed, and fresh peripheral blood mononuclear cells (PBMCs) were isolated. Mitochondrial respiratory complex activity was measured using a Clarke electrode. Adenosine triphosphate (ATP) and citrate synthase activity (CS) were determined by bioluminescence and photometrically. N-aspartyl-aspartate (tNAA), ATP, creatine (Cr), and phosphocreatine (PCr) were quantified in brains using 1H- and 31P-magnetic resonance spectroscopic imaging (MRSI). Levels of insulin-like growth factor 1 (IGF-1) were determined using a radio-immune assay (RIA). Complex IV activity (CIV) (- 15%) and ATP levels (- 11%) were reduced in PBMCs isolated from older participants. Serum levels of IGF-1 were significantly reduced (- 34%) in older participants. Genes involved in mitochondrial activity, antioxidant mechanisms, and autophagy were unaffected by age. tNAA levels were reduced (- 5%), Cr (+ 11%), and PCr (+ 14%) levels were increased, and ATP levels were unchanged in the brains of older participants. Markers of energy metabolism in blood cells did not significantly correlate with energy metabolites in the brain. Age-related bioenergetic changes were detected in peripheral blood cells and the brains of healthy older people. However, mitochondrial function in peripheral blood cells does not reflect energy related metabolites in the brain. While ATP levels in PBMCs may be be a valid marker for age-related mitochondrial dysfunction in humans, cerebral ATP remained constant.


Assuntos
Fator de Crescimento Insulin-Like I , Doenças Mitocondriais , Masculino , Humanos , Feminino , Idoso , Fator de Crescimento Insulin-Like I/metabolismo , Leucócitos Mononucleares/metabolismo , Estudos Transversais , Metabolismo Energético/fisiologia , Trifosfato de Adenosina/metabolismo , Encéfalo/metabolismo , Creatina/metabolismo , Doenças Mitocondriais/metabolismo
19.
J Cereb Blood Flow Metab ; 44(3): 407-418, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37824728

RESUMO

The human brain undergoes metabolic adaptations in obesity, but the underlying mechanisms have remained largely unknown. We compared concentrations of often reported brain metabolites measured with magnetic resonance spectroscopy (1H-MRS, 3 T MRI) in the occipital lobe in subjects with obesity and lean controls under different metabolic conditions (fasting, insulin clamp, following weight loss). Brain glucose uptake (BGU) quantified with 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET)) was also performed in a subset of subjects during clamp. In dataset A, 48 participants were studied during fasting with brain 1H-MRS, while in dataset B 21 participants underwent paired brain 1H-MRS acquisitions under fasting and clamp conditions. In dataset C 16 subjects underwent brain 18F-FDG-PET and 1H-MRS during clamp. In the fasting state, total N-acetylaspartate was lower in subjects with obesity, while brain myo-inositol increased in response to hyperinsulinemia similarly in both lean participants and subjects with obesity. During clamp, BGU correlated positively with brain glutamine/glutamate, total choline, and total creatine levels. Following weight loss, brain creatine levels were increased, whereas increases in other metabolites remained not significant. To conclude, insulin signaling and glucose metabolism are significantly coupled with several of the changes in brain metabolites that occur in obesity.


Assuntos
Obesidade Mórbida , Humanos , Obesidade Mórbida/metabolismo , Insulina , Fluordesoxiglucose F18/metabolismo , Creatina/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Obesidade/diagnóstico por imagem , Obesidade/metabolismo , Redução de Peso/fisiologia , Neuroimagem , Glucose/metabolismo , Colina/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-38135279

RESUMO

BACKGROUND: The D3-creatine (D3-Cr) dilution method is of emerging interest for estimating total-body skeletal muscle mass. This review explores the association of muscle mass estimated via D3-Cr with various clinical outcomes and provides a summary of the literature comparing D3-Cr with other body composition techniques. METHODS: A literature search was conducted on PubMed/MEDLINE and Web of Science for studies using D3-Cr to measure muscle in adult populations (ie, ≥18 years old) from inception until September 2023. RESULTS: Out of the 23 included studies, 15 investigated the correlation between D3-Cr and clinical outcomes. More consistent associations were reported for mortality (100%, n = 2), mobility disability (100%; n = 5), falls and fractures (100%; n = 3), physical performance (63.3%; n = 11), muscle strength (44.4%; n = 9), and muscle composition (33.3%; n = 3). However, conflicting findings were also reported for such correlations. Among the 23 studies, 14 compared D3-Cr-estimated muscle with other body composition techniques, including magnetic resonance imaging (MRI) as a reference method. Strong and positive correlations were found between D3-Cr and MRI. Nonetheless, variations in muscle measurements were noted, with differences in D3-Cr values ranging from 0.62 kg lower to 13.47 kg higher compared to MRI. CONCLUSIONS: D3-Cr-estimated muscle mass may be a valuable predictor of clinical outcomes showing consistent associations with falls and fractures, mobility disability, and mortality. However, less consistent associations were found with muscle strength and composition, and physical performance. Although a strong correlation exists between D3-Cr-estimated muscle mass and MRI measurements, under- or overestimation may occur.


Assuntos
Creatina , Músculo Esquelético , Composição Corporal/fisiologia , Creatina/metabolismo , Técnicas de Diluição do Indicador , Força Muscular , Músculo Esquelético/metabolismo , Adulto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...